Sets

Definition. A set is a collection of different things, without regards to order. Same elements in a set are only counted once. It is denoted by

\[X = \set{a, b, c}\]

and we write $x \in X$ if $x$ is a member of the set $X$.

Definition. Two sets $A, B$ are equal, denoted by $A = B$, if they have the same elements, i.e.

\[(\forall x)\, x \in A \iff x \in B\]

Definition. $A$ is a subset of $B$, denoted by $A \subset B$, if all elements in $A$ are in $B$, i.e.

\[(\forall x)\, x \in A \implies x \in B\]

Theorem. $A = B$ iff $A \subseteq B$ and $B \subseteq A$.

It is commonly used for proving two sets are equal, by showing all elements in $A$ are in $B$ and vice verse.

Operations

Given two sets $A$ and $B$,

Definition. The complement is defined by

\[A^\mathsf{c} = \set{x : x \not \in A}\]

Definition. The intersection is defined by

\[A \cap B = \set{x : x \in A \text{ and } x \in B}\]

Definition. The union is defined by

\[A \cup B = \set{x : x \in A \text{ or } x \in B}\]

Definition. The difference is defined by

\[A \setminus B = \set{x : x \in A \text{ and } x \not \in B}\]

Definition. The power set of $X$ is defined by

\[\mathcal{P}(X) = \set{A : A \subseteq X}\]

i.e. the set of all subsets.

Identities

Theorem. Distributive Laws

\[\begin{align*} A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \end{align*}\]

Theorem. De Morgan’s Laws

\[\begin{align*} (A \cup B)^\mathsf{c} &= A^\mathsf{c} \cap B^\mathsf{c} \\ (A \cap B)^\mathsf{c} &= A^\mathsf{c} \cup B^\mathsf{c} \end{align*}\]

Theorem. Absorption Laws

\[\begin{align*} A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \end{align*}\]

Theorem. Set Difference Law

\[A \setminus B = A \cap B^\mathsf{c}\]

Symmetric Difference

Definition. The symmetric difference is defined by

\[A \Delta B = \set{x : x \in A \text{ xor } x \in B}\]

i.e. the element is either in $A$ or $B$ but not both.

Theorem. Alternatively, we have

\[\begin{align*} A \Delta B &= (A \setminus B) \cup (B \setminus A) = (A \cap B^\mathsf{c}) \cup (A^\mathsf{c} \cap B) \\ &= (A \cup B) \cap (A^\mathsf{c} \cup B^\mathsf{c}) \end{align*}\]

Theorem. Symmetric difference is associative, i.e. $A \Delta (B \Delta C) = (A \Delta B) \Delta C$.

Proof.

\[\begin{align*} A \Delta (B \Delta C) &= (A \cap ((B \cup C) \cap (B^\mathsf{c} \cup C^\mathsf{c}))^\mathsf{c}) \cup (A^\mathsf{c} \cap ((B \cap C^\mathsf{c}) \cup (B^\mathsf{c} \cap C))) \\ &= (A \cap B \cap C) \cup (A \cap B^\mathsf{c} \cap C^\mathsf{c}) \cup (A^\mathsf{c} \cap B \cap C^\mathsf{c}) \cup (A^\mathsf{c} \cap B^\mathsf{c} \cap C) \\ &= (((A \cup B) \cap (A^\mathsf{c} \cup B^\mathsf{c}))^\mathsf{c} \cap C) \cup (((A \cap B^\mathsf{c}) \cup (A^\mathsf{c} \cap B)) \cap C^\mathsf{c}) \\ &= (A \Delta B) \Delta C \end{align*}\]

All sets form a group under symmetric difference.

Ordered Pairs

Definition. An ordered pair $(a, b)$ is a pair of two items in which order matters. In terms of sets,

\[(a, b) = \set{\set{a}, \set{a, b}}\]

Definition. The Cartesian product of $A$ and $B$ is defined by

\[A \times B = \set{(a, b) : a \in A, b \in B}\]

which can be extend to $n$ products.

Counting

Definition. Let $X$ be a set. For each $A \subseteq X$, the indicator function or characteristic function of $A$ is the function $i_A : X \to \set{0, 1}$ such that

\[i_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}\]

Therefore, we also have $\vert A \vert = \sum_{x \in X} i_A(x)$.

Lemma. Let $A$ and $B$ be two sets, we have

  • $i_A = i_B \iff A = B$

  • $i_{A \cap B} = i_A i_B$

  • $i_{A^\mathsf{c}} = 1 - i_A$

  • $i_{A \cup B} = 1 - i_{A^\mathsf{c} \cap B^\mathsf{c}} = 1 - (1 - i_A)(1 - i_B) = i_A + i_B - i_{A \cap B}$

  • $i_{A \setminus B} = i_{A \cap B^\mathsf{c}} = i_A(1 - i_B) = i_A - i_{A \cap B}$

Theorem. $\vert A \cup B \vert = \vert A \vert + \vert B \vert - \vert A \cap B \vert$

Proof.

\[\begin{align*} \vert A \cup B \vert &= \sum_{x \in X} i_{A \cup B}(x) \\ &= \sum_{x \in X} i_A(x) + i_B(x) - i_{A \cap B}(x) \\ &= \vert A \vert + \vert B \vert - \vert A \cap B \vert \end{align*}\]

Theorem. [Inclusion-Exclusion Principle] Let $A_i$ be the subsets of a finite set $X$, for $1 \le i \le n$. Then

\[\vert A_1 \cup \cdots \cup A_n \vert = \sum_i \vert A_i \vert - \sum_{i < j} \vert A_i \cap A_j \vert + \cdots + (-1)^{n-1} \vert A_1 \cap \cdots \cap A_n \vert\]

or

\[\vert A_1^\mathsf{c} \cap \cdots \cap A_n^\mathsf{c} \vert = \vert X \vert - \sum_i \vert A_i \vert + \sum_{i < j} \vert A_i \cap A_j \vert + \cdots + (-1)^{n} \vert A_1 \cap \cdots \cap A_n \vert\]

since $\vert A_1 \cup \cdots \cup A_n \vert = \vert X \vert - \vert A_1^\mathsf{c} \cap \cdots \cap A_n^\mathsf{c} \vert$.

Proof.

Using the indicator functions,

\[\begin{align*} i_{A_1^\mathsf{c} \cap \cdots \cap A_n^\mathsf{c}} &= \prod_j i_{A_j^\mathsf{c}} \\ &= \prod_j (1 - i_{A_j}) \\ &= 1 - \sum_i i_{A_i} + \sum_{i < j} i_{A_i}i_{A_j} + \cdots + (-1)^n i_{A_1}i_{A_2}...i_{A_n} \\ &= 1 - \sum_i i_{A_i} + \sum_{i < j} i_{A_i \cap A_j} + \cdots + (-1)^n i_{A_1 \cap \cdots \cap A_n} \end{align*}\]

Hence,

\[\begin{align*} \vert A_1^\mathsf{c} \cap \cdots \cap A_n^\mathsf{c} \vert &= \sum_{x \in X} i_{A_1^\mathsf{c} \cap \cdots \cap A_n^\mathsf{c}}(x) \\ &= \sum_x 1 - \sum_i i_{A_i} + \sum_{i < j} \sum_x i_{A_i \cap A_j}(x) + \cdots + (-1)^n \sum_x i_{A_1 \cap \cdots \cap A_n}(x) \\ &= \vert X \vert - \sum_i \vert A_i \vert + \sum_{i < j} \vert A_i \cap A_j \vert + \cdots + (-1)^{n} \vert A_1 \cap \cdots \cap A_n \vert \end{align*}\]

References