Vector Geometry
Vectors provide a convenient way for describing geometry in $\mathbf{R}^3$.
Lines
Theorem. Let $L$ be a line through a point $A: \vec{OA} = \mathbf{a}$ and parallel to a vector $\mathbf{t}$, then
\[L: (\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0}\]Proof.
Let $P: \vec{OP} = \mathbf{x}$ be a point on $L$. As $\vec{AP} = \vec{OP} - \vec{OA} = \mathbf{x} - \mathbf{a}$, for $\lambda \in \mathbb{R}$,
\[\mathbf{x} - \mathbf{a} = \lambda \mathbf{t}\]We can eliminate $\lambda$ by taking cross product on both side with $\mathbf{t}$, i.e.
\[(\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0}\]
Corollary. Let $L$ be a line through two points $A: \vec{OA} = \mathbf{a}$ and $B: \vec{OB} = \mathbf{b}$, then
\[L: (\mathbf{x} - \mathbf{a}) \times (\mathbf{b} - \mathbf{a}) = \mathbf{0}\]or alternatively, for $\lambda \in \mathbb{R}$,
\[L: \mathbf{x} = (1 - \lambda)\mathbf{a} + \lambda\mathbf{b}\]Proof.
$L$ is parallel to $\mathbf{t} = \vec{AB} = \vec{OB} - \vec{OA} = \mathbf{b} - \mathbf{a}$ and then by the point-slope form.
Alternatively, we can write $\mathbf{x} = \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$ to derive the second form.
Theorem. The equation $\mathbf{x} \times \mathbf{t} = \mathbf{u}$ has many solutions when $\mathbf{t} \cdot \mathbf{u} = 0$, in which is a line in direction $\mathbf{t}$ through $(\mathbf{t} \times \mathbf{u} / \vert \mathbf{t} \vert^2$, i.e.
\[\mathbf{x} = {\mathbf{t} \times \mathbf{u} \over \vert \mathbf{t} \vert^2} + \lambda \mathbf{t}\]It has no solutions if $\mathbf{t} \cdot \mathbf{u} \not = 0$.
Proof.
By dotting with $\mathbf{t}$, we have
\[\mathbf{t} \cdot \mathbf{u} = \mathbf{t} \cdot (\mathbf{x} \times \mathbf{t}) = 0\]which there are no solutions unless $\mathbf{t} \cdot \mathbf{u} = 0$. Geometrically, it is due to the fact that the vector product $\mathbf{x} \times \mathbf{t}$ has to be perpendicular to $\mathbf{t}$.
By crossing with $\mathbf{t}$, we have
\[\mathbf{t} \times \mathbf{u} = \mathbf{t} \times (\mathbf{x} \times \mathbf{t}) = (\mathbf{t} \cdot \mathbf{t})\mathbf{x} - (\mathbf{t} \cdot \mathbf{x})\mathbf{t}\]Hence,
\[\mathbf{x} = {\mathbf{t} \times \mathbf{u} \over \vert \mathbf{t} \vert^2} + {(\mathbf{t} \cdot \mathbf{x}) \over \vert \mathbf{t} \vert^2 }\mathbf{t} = {\mathbf{t} \times \mathbf{u} \over \vert \mathbf{t} \vert^2} + \lambda \mathbf{t}\]
It provides a way to convert a line $L: \mathbf{x} \times \mathbf{t} = \mathbf{u}$ to other forms we know.
Planes
Theorem. Let $\Pi$ be a plane contains the point $A: \vec{OA} = \mathbf{a}$ and has normal in the direction of a vector $\mathbf{n}$, then
\[\Pi: (\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0\]Proof.
Let $P: \vec{OP} = \mathbf{x}$ be a point on $\Pi$, then $\vec{PA} \perp \mathbf{n}$ and hence
\[(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0\]
Corollary. Let $\Pi$ be a plane through three points $A: \vec{OA} = \mathbf{a}$, $B: \vec{OB} = \mathbf{b}$ and $C: \vec{OC} = \mathbf{c}$, then
\[\Pi: (\mathbf{x} - \mathbf{a}) \cdot [(\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})] = [\mathbf{x} - \mathbf{a}, \mathbf{b} - \mathbf{a}, \mathbf{c} - \mathbf{a}] = 0\]or
\[\Pi: [\mathbf{x}, \mathbf{b}, \mathbf{c}] + [\mathbf{a}, \mathbf{x}, \mathbf{c}] + [\mathbf{a}, \mathbf{b}, \mathbf{x}] = [\mathbf{a}, \mathbf{b}, \mathbf{c}]\]or alternatively, for $\lambda, \mu \in \mathbb{R}$,
\[\Pi: \mathbf{x} = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}\]
Theorem. The distance between the origin and the plane $\Pi: (\mathbf{x} - \mathbf{a}) \cdot \mathbf{\hat{n}} = 0$ is
\[d = \mathbf{a} \cdot \mathbf{\hat{n}}\]Proof.
Let $\mathbf{x_O}$ be the position vector of the closest point on the plane $\Pi$ to the origin, we have
\[(\mathbf{x_O} - \mathbf{a}) \cdot \mathbf{\hat{n}} = 0\]$\mathbf{x_O}$ must be orthogonal to the plane and therefore parallel to $\mathbf{\hat{n}}$, i.e.
\[\mathbf{x_O} = d\mathbf{\hat{n}}\]where $\vert d \vert $ is the distance from the origin to the plane.
Hence,
\[d = \vert \mathbf{x_O} \cdot \mathbf{\hat{n}} \vert = \vert \mathbf{a} \cdot \mathbf{\hat{n}} \vert\]
Corollary. Let $\Pi$ be a plane which has unit normal $\mathbf{\hat{n}}$ and has distance $d$ from the origin, then
\[\Pi: \mathbf{x} \cdot \mathbf{\hat{n}} = d\]
It provides a way to convert a plane $\Pi: \mathbf{x} \cdot \mathbf{\hat{n}} = d$ to other forms we know and gives a geometric meaning to it.
Geometry Problems
Distance between Point and Line
Proposition. The distance between a point $Y: \vec{OY} = \mathbf{y}$ and a line $L: (\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0}$ is
\[d = {|(\mathbf{y} - \mathbf{a}) \times \mathbf{t}| \over |\mathbf{t}|}\]Proof.
Let $\theta$ be the non-reflex angle between $\vec{AY}$ and $\mathbf{t}$, we have
\[d = |\mathbf{y} - \mathbf{a}|\sin\theta\]Since
\[\vert (\mathbf{y} - \mathbf{a}) \times \mathbf{t} \vert = \vert (\mathbf{y} - \mathbf{a}) \vert \vert \mathbf{t} \vert \sin\theta = d\vert t \vert\]Hence,
\[d = {|(\mathbf{y} - \mathbf{a}) \times \mathbf{t}| \over |\mathbf{t}|}\]
Distance between Parallel Lines
Proposition. The distance between two parallel lines $L_1: (\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0}$ and $L_2: (\mathbf{x} - \mathbf{b}) \times \mathbf{t} = \mathbf{0}$ is
\[d = {|(\mathbf{b} - \mathbf{a}) \times \mathbf{t}| \over |\mathbf{t}|}\]Proof.
As $\mathbf{b}$ is a point on $L_2$, we can find the distance by substituting $\mathbf{y} = \mathbf{b}$ to the above.
Distance between Skew Lines
Definition. Two lines in $\mathbb{R}^3$ are said to be skew if they do not lie in any plane.
Proposition. The distance between two skew lines $L_1: (\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0}$ and $L_2: (\mathbf{x} - \mathbf{b}) \times \mathbf{u} = \mathbf{0}$ is
\[d = {|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{t} \times \mathbf{u})| \over |\mathbf{t} \times \mathbf{u}|}\]Proof.
$L_1$ and $L_2$ are skew if they lie in a pair of parallel planes. Consider the planes
\[\Pi_1: (\mathbf{x} - \mathbf{a}) \cdot (\mathbf{t} \times \mathbf{u}) = 0 \quad \text{and} \quad \Pi_2: (\mathbf{x} - \mathbf{b}) \cdot (\mathbf{t} \times \mathbf{u}) = 0\]$L_1$ is on $\Pi_1$ and $L_2$ is on $\Pi_2$. Also, $\Pi_1$ and $\Pi_2$ are parallel because they have common normal $\mathbf{t} \times \mathbf{u}$. Hence, the distance between $L_1$ and $L_2$ is equal to the distance between $\Pi_1$ and $\Pi_2$, which is
\[d = {|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{t} \times \mathbf{u})| \over |\mathbf{t} \times \mathbf{u}|}\]
Intersection between Lines
Proposition. Two lines $L_1: (\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0}$ and $L_2: (\mathbf{x} - \mathbf{b}) \times \mathbf{u} = \mathbf{0}$ intersects iff $\mathbf{t} \times \mathbf{u} \not = \mathbf{0}$ and the intersection is
\[\mathbf{x} = \mathbf{a} + {[\mathbf{t} \times \mathbf{u}, \mathbf{b} - \mathbf{a}, \mathbf{u}] \over |\mathbf{t} \times \mathbf{u}|^2}\mathbf{t}\]Proof.
The two lines are parallel if $ \mathbf{t} \times \mathbf{u} = \mathbf{0}$. Hence, either they are the same line or there is no intersection.
If $ \mathbf{t} \times \mathbf{u} \not = \mathbf{0}$, consider a line $L_2’$ through $\mathbf{a}$ and parallel to $L_2$, $L_1$ and $L_2’$ forms a plane $\Pi$ with normal vector $\mathbf{t} \times \mathbf{u}$. Therefore, we have
\[\Pi: (\mathbf{x} - \mathbf{a}) \cdot (\mathbf{t} \times \mathbf{u}) = 0\]As $L_2$ is parallel to $L_2’$, either $L_2$ intersects $\Pi$ nowhere (in which $L_1$ and $L_2$ has no intersection) or $L_2$ is on $\Pi$. Therefore, the condition for $L_1$ and $L_2$ to intersect is
\[(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{t} \times \mathbf{u}) = 0\]Conversely, if the above is true, the plane $\Pi$ passes through the origin as the distance of the plane from origin is $0$, and we can express $\mathbf{b} - \mathbf{a}$ as
\[\mathbf{b} - \mathbf{a} = \mathbf{0} + \lambda \mathbf{t} + \mu \mathbf{u}\]for some $\lambda, \mu \in \mathbb{R}$.
Consier
\[\mathbf{x} = \mathbf{a} + \lambda\mathbf{t} = \mathbf{b} - \mu\mathbf{u}\]$\mathbf{x}$ is on both $L_1$ and $L_2$ and therefore it is the intersection of $L_1$ and $L_2$.
By some vector manipulations, we have
\[\begin{gather} \mathbf{a} + \lambda\mathbf{t} = \mathbf{b} - \mu\mathbf{u} \\ \lambda(\mathbf{t} \times \mathbf{u}) = (\mathbf{b} - \mathbf{a}) \times \mathbf{u} \\ \lambda |\mathbf{t} \times \mathbf{u}|^2 = [\mathbf{t} \times \mathbf{u}, \mathbf{b} - \mathbf{a}, \mathbf{u}] \\ \end{gather}\]Hence,
\[\mathbf{x} = \mathbf{a} + {[\mathbf{t} \times \mathbf{u}, \mathbf{b} - \mathbf{a}, \mathbf{u}] \over |\mathbf{t} \times \mathbf{u}|^2}\mathbf{t}\]
Distance between Point and Plane
Proposition. The distance between a point $Y: \vec{OY} = \mathbf{y}$ and a plane $\Pi: (\mathbf{x} - \mathbf{a}) \cdot \mathbf{\hat{n}} = 0$ is
\[d = \vert \mathbf{a} \cdot \mathbf{n} - \mathbf{y} \cdot \mathbf{\hat{n}} \vert\]Proof.
$P: \vec{OP} = \mathbf{y} + d\mathbf{\hat{n}}$ is a point on $\Pi$, where $\vert d \vert$ is the distance from $Y$ to $\Pi$, i.e.
\[(\mathbf{y} + d\mathbf{\hat{n}} - \mathbf{a}) \cdot \mathbf{\hat{n}} = 0\]Hence,
\[d = \vert \mathbf{a} \cdot \mathbf{\hat{n}} - \mathbf{y} \cdot \mathbf{\hat{n}} \vert\]
Distance between Parallel Planes
Proposition. The distance between two parallel planes $\Pi_1: (\mathbf{x} - \mathbf{a}) \cdot \mathbf{\hat{n}} = 0$ and $\Pi_2: (\mathbf{x} - \mathbf{b}) \cdot \mathbf{\hat{n}} = 0$ is
\[d = \vert (\mathbf{b} - \mathbf{a}) \cdot \mathbf{\hat{n}} \vert\]Proof.
$\mathbf{b}$ is a point on $\Pi_2$ hence
\[d = \vert \mathbf{b} \cdot \mathbf{\hat{n}} - \mathbf{a} \cdot \mathbf{\hat{n}} \vert = \vert (\mathbf{b} - \mathbf{a}) \cdot \mathbf{\hat{n}} \vert\]
Intersection between Line and Plane
Proposition. Given a line $L: (\mathbf{x} - \mathbf{a}) \times \mathbf{t} = \mathbf{0}$ and a plane $\Pi: (\mathbf{x} - \mathbf{b}) \cdot \mathbf{n} = 0$. If $\mathbf{n} \cdot \mathbf{t} = 0$, there is either no intersection or $L$ is on the plane $\Pi$. If $\mathbf{n} \cdot \mathbf{t} \not = 0$, then the intersection is
\[\mathbf{x} = \mathbf{a} + {\mathbf{n} \cdot \mathbf{b} - \mathbf{n} \cdot \mathbf{a} \over \mathbf{n} \cdot \mathbf{t}} \mathbf{t}\]Proof.
If $\mathbf{n} \cdot \mathbf{t} = 0$, $L$ and $\Pi$ are parallel. If $\mathbf{a}$ is on $\Pi$, i.e. $(\mathbf{a} - \mathbf{b}) \cdot \mathbf{n} = 0$, then $L$ is on $\Pi$, otherwise, there is no intersection.
If $\mathbf{n} \cdot \mathbf{t} \not = 0$, by crossing by $\mathbf{n}$ on both side, we have
\[\begin{align*} \mathbf{n} \times (\mathbf{x} \times \mathbf{t}) &= \mathbf{n} \times (\mathbf{a} \times \mathbf{t}) \\ (\mathbf{n} \cdot \mathbf{t}) \mathbf{x} - (\mathbf{n} \cdot \mathbf{x}) \mathbf{t} &= (\mathbf{n} \cdot \mathbf{t}) \mathbf{a} - (\mathbf{n} \cdot \mathbf{a}) \mathbf{t} \\ (\mathbf{n} \cdot \mathbf{t}) \mathbf{x} &= (\mathbf{n} \cdot \mathbf{t}) \mathbf{a} + (\mathbf{n} \cdot \mathbf{b}) \mathbf{t} - (\mathbf{n} \cdot \mathbf{a}) \mathbf{t} \\ \end{align*}\]Hence,
\[\mathbf{x} = \mathbf{a} + {\mathbf{n} \cdot \mathbf{b} - \mathbf{n} \cdot \mathbf{a} \over \mathbf{n} \cdot \mathbf{t}} \mathbf{t}\]
Intersection of Two Planes (Line)
Proposition. Given two planes $\Pi_1: \mathbf{x} \cdot \mathbf{n_1} = d_1$ and $\Pi_2: \mathbf{x} \cdot \mathbf{n_2} = d_2$. If $\mathbf{n_1} \times \mathbf{n_2} = \mathbf{0}$, then there are no intersections unless $d_1 = d_2$. If $\mathbf{n_1} \times \mathbf{n_2} \not = \mathbf{0}$, then the intersections are
\[\mathbf{x} \times (\mathbf{n_1} \times \mathbf{n_2}) = d_2\mathbf{n_1} - d_1\mathbf{n_2}\]Proof.
Their line of intersection $L$ must be in the direction that is orthogonal to both $\mathbf{n_1}$ and $\mathbf{n_2}$, i.e. $\mathbf{n_1} \times \mathbf{n_2}$.
Therefore, the equation of $L$ is of the form
\[\mathbf{x} \times (\mathbf{n_1} \times \mathbf{n_2}) = \mathbf{c}\]Expanding the L.H.S. we have
\[\begin{align*} \mathbf{c} &= \mathbf{x} \times (\mathbf{n_1} \times \mathbf{n_2}) \\ &= (\mathbf{x} \cdot \mathbf{n_2}) \mathbf{n_1} - (\mathbf{x} \cdot \mathbf{n_1}) \mathbf{n_n} \\ \end{align*}\]Hence, as $\mathbf{x}$ is on $\Pi_1$ and $\Pi_2$, the intersections are
\[\mathbf{x} \times (\mathbf{n_1} \times \mathbf{n_2}) = d_2\mathbf{n_1} - d_1\mathbf{n_2}\]
Intersection of Three Planes (Point)
Proposition. Given three planes $\Pi_1: \mathbf{x} \cdot \mathbf{n_1} = d_1$, $\Pi_2: \mathbf{x} \cdot \mathbf{n_2} = d_2$, $\Pi_3: \mathbf{x} \cdot \mathbf{n_3} = d_3$. If $[\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3}] \not = 0$, their intersection is
\[\mathbf{x} = {d_1(\mathbf{n_2} \times \mathbf{n_3}) + d_2(\mathbf{n_3} \times \mathbf{n_1}) + d_3(\mathbf{n_1} \times \mathbf{n_2}) \over [\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3}]}\]Proof.
For the three planes to intersect at one point, their normals can’t be co-planar, i.e. $[\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3}] \not = 0$.
As any point $\mathbf{p}$ in the 3D space can be expressed as
\[\mathbf{p} = {\mathbf{p} \cdot \mathbf{n_1} \over [\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3}]} (\mathbf{n_2} \times \mathbf{n_3}) + {\mathbf{p} \cdot \mathbf{n_2} \over [\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3}]} (\mathbf{n_3} \times \mathbf{n_1}) + {\mathbf{p} \cdot \mathbf{n_3} \over [\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3}]} (\mathbf{n_1} \times \mathbf{n_2})\]Hence, their intersection is
\[\mathbf{x} = {d_1(\mathbf{n_2} \times \mathbf{n_3}) + d_2(\mathbf{n_3} \times \mathbf{n_1}) + d_3(\mathbf{n_1} \times \mathbf{n_2}) \over [\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3}]}\]
References
- Alan F. Beardon Algebra and Geometry, 2005 - Section 4.7
- Stephen J. Cowley Algebra and Geometry Lectures Notes, 2006 - Section 2.13